skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fuller, Jim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High rates of stable mass transfer likely occur for some binary star systems, but the resulting flow of mass and angular momentum (AM) is unclear. We perform hydrodynamical simulations of a polytropic donor star and a point-mass secondary to determine the mass, AM, and velocity of gas that leaves the system, and the dependence on binary parameters such as mass ratio. The simulations use an adiabatic equation of state and do not include radiative cooling or irradiation of the outflow. Mass transfer is initiated by injecting heat into the stellar envelope, causing it to gradually inflate and overflow its Roche lobe. The transferred mass flows into an accretion disk, but soon begins to escape through the outer Lagrange point (L2), with a lesser amount escaping through the L3 point. This creates an equatorially concentrated circumbinary outflow with an opening angle of 10°–30° with a wind-like density profileρ∝r−2. We find that the ratios of the specific AM of the outflowing gas over that of the L2 point are approximately {0.95, 0.9, 0.8, 0.65} for mass ratiosq= {0.25, 0.5, 1, 2} (accretor/donor). The asymptotic radial velocity of the outflowing gas, in units of the binary orbital velocity, is approximately 0.1–0.2 for the same mass ratios, except forq= 0.25, where it might be higher. This outflow, if ultimately unbound from the binary, may be a source of circumstellar material that interacts with ejecta from a subsequent supernova or stellar merger. 
    more » « less
    Free, publicly-accessible full text available September 5, 2026
  2. Ultrastripped and Type Ibn supernovae (USSNe and SNe Ibn, respectively) are fast-evolving, hydrogen-poor transients that often show signs of interaction with dense circumstellar material (CSM). S. C. Wu & J. Fuller identify a mass range for helium-core stars in which they expand significantly during core oxygen/neon burning, resulting in extreme late-stage mass loss in tight binaries (P∼ 1–100 days). Here we explore the resulting light curves from a subset of models from S. C. Wu & J. Fuller and find that in some cases they can exhibit two phases of shock cooling emission (SCE). The first SCE is attributed to the circumbinary material, and the second is from the extended helium-burning envelope of the exploding star. Since SCE luminosity is roughly proportional to the initial radius of the emitting material, events that exhibit both phases of SCE provide the exciting opportunity of measuring both the extent of the CSM and the radius of the exploding star. These light curves are explored with both analytic arguments and numerical modeling, and from this we identify the parameter space of CSM mass, helium envelope (HE) mass, and nickel mass, for which the HE SCE will be visible. We provide a qualitative comparison of these models to two fast-evolving, helium-rich transients, SN 2019kbj and SN 2019dge. The similarity between these events and our models demonstrates that this extreme binary mass loss mechanism may explain some SNe Ibn and USSNe. 
    more » « less
    Free, publicly-accessible full text available July 4, 2026
  3. Abstract Double white dwarf (WD) binaries are increasingly being discovered at short orbital periods where strong tidal effects and significant tidal heating signatures may occur. We assume that the tidal potential of the companion excites outgoing gravity waves within the WD primary, the dissipation of which leads to an increase in the WD’s surface temperature. We compute the excitation and dissipation of the waves in cooling WD models in evolvingMESAbinary simulations. Tidal heating is self-consistently computed and added to the models at every time step. As a binary inspirals to orbital periods less than ∼20 minutes, the WD’s behavior changes from cooling to heating, with temperature enhancements that can exceed 10,000 K compared with nontidally heated models. We compare a grid of tidally heated WD models to observed short-period systems with hot WD primaries. While tidal heating affects theirTeff, it is likely not the dominant luminosity. Instead, these WDs are probably intrinsically young and hot, implying that the binaries formed at short orbital periods. The binaries are consistent with undergoing common envelope evolution with a somewhat low efficiencyαCE. We delineate the parameter space where the traveling wave assumption is most valid, noting that it breaks down for WDs that cool sufficiently, where standing waves may instead be formed. 
    more » « less
  4. Abstract Many core-collapse supernovae (SNe) with hydrogen-poor and low-mass ejecta, such as ultra-stripped SNe and type Ibn SNe, are observed to interact with dense circumstellar material (CSM). These events likely arise from the core collapse of helium stars that have been heavily stripped by a binary companion and have ejected significant mass during the last weeks to years of their lives. In helium star models run to days before core collapse we identify a range of helium core masses ≈2.5–3Mwhose envelopes expand substantially due to the helium shell burning while the core undergoes neon and oxygen burning. When modeled in binary systems, the rapid expansion of these helium stars induces extremely high rates of late-stage mass transfer ( M ̇ 10 2 M yr 1 ) beginning weeks to decades before core collapse. We consider two scenarios for producing CSM in these systems: either mass transfer remains stable and mass loss is driven from the system in the vicinity of the accreting companion, or mass transfer becomes unstable and causes a common envelope event (CEE) through which the helium envelope is unbound. The ensuing CSM properties are consistent with the CSM masses (∼10−2–1M) and radii (∼1013–1016cm) inferred for ultra-stripped SNe and several type Ibn SNe. Furthermore, systems that undergo a CEE could produce short-period neutron star binaries that merge in less than 100 Myr. 
    more » « less
  5. ABSTRACT Common envelope (CE) evolution, which is crucial in creating short-period binaries and associated astrophysical events, can be constrained by reverse modelling of such binaries’ formation histories. Through analysis of a sample of well-constrained white dwarf (WD) binaries with low-mass primaries (seven eclipsing double WDs, two non-eclipsing double WDs, one WD-brown dwarf), we estimate the CE energy efficiency αCE needed to unbind the hydrogen envelope. We use grids of He- and CO-core WD models to determine the masses and cooling ages that match each primary WD’s radius and temperature. Assuming gravitational wave-driven orbital decay, we then calculate the associated ranges in post-CE orbital period. By mapping WD models to a grid of red giant progenitor stars, we determine the total envelope binding energies and possible orbital periods at the point CE evolution is initiated, thereby constraining αCE. Assuming He-core WDs with progenitors of 0.9–2.0 M⊙, we find αCE ∼ 0.2–0.4 is consistent with each system we model. Significantly higher values of αCE are required for higher mass progenitors and for CO-core WDs, so these scenarios are deemed unlikely. Our values are mostly consistent with previous studies of post-CE WD binaries, and they suggest a nearly constant and low envelope ejection efficiency for CE events that produce He-core WDs. 
    more » « less
  6. ABSTRACT Post-common envelope binaries (PCEBs) containing a white dwarf (WD) and a main-sequence (MS) star can constrain the physics of common envelope evolution and calibrate binary evolution models. Most PCEBs studied to date have short orbital periods (Porb ≲ 1 d), implying relatively inefficient harnessing of binaries’ orbital energy for envelope expulsion. Here, we present follow-up observations of five binaries from 3rd data release of Gaia mission containing solar-type MS stars and probable ultramassive WDs ($$M\gtrsim 1.2\ {\rm M}_{\odot}$$) with significantly wider orbits than previously known PCEBs, Porb = 18–49 d. The WD masses are much higher than expected for systems formed via stable mass transfer at these periods, and their near-circular orbits suggest partial tidal circularization when the WD progenitors were giants. These properties strongly suggest that the binaries are PCEBs. Forming PCEBs at such wide separations requires highly efficient envelope ejection, and we find that the observed periods can only be explained if a significant fraction of the energy released when the envelope recombines goes into ejecting it. Our one-dimensional stellar models including recombination energy confirm prior predictions that a wide range of PCEB orbital periods, extending up to months or years, can potentially result from Roche lobe overflow of a luminous asymptotic giant branch (AGB) star. This evolutionary scenario may also explain the formation of several wide WD + MS binaries discovered via self-lensing, as well as a significant fraction of post-AGB binaries and barium stars. 
    more » « less
  7. Abstract We present SN 2023zaw—a subluminous (Mr= −16.7 mag) and rapidly evolving supernova (t1/2,r= 4.9 days), with the lowest nickel mass (≈0.002M) measured among all stripped-envelope supernovae discovered to date. The photospheric spectra are dominated by broad Heiand Ca near-infrared emission lines with velocities of ∼10,000−12,000 km s−1. The late-time spectra show prominent narrow Heiemission lines at ∼1000 km s−1, indicative of interaction with He-rich circumstellar material. SN 2023zaw is located in the spiral arm of a star-forming galaxy. We perform radiation-hydrodynamical and analytical modeling of the lightcurve by fitting with a combination of shock-cooling emission and nickel decay. The progenitor has a best-fit envelope mass of ≈0.2Mand an envelope radius of ≈50R. The extremely low nickel mass and low ejecta mass (≈0.5M) suggest an ultrastripped SN, which originates from a mass-losing low-mass He-star (zero-age main-sequence mass < 10M) in a close binary system. This is a channel to form double neutron star systems, whose merger is detectable with LIGO. SN 2023zaw underscores the existence of a previously undiscovered population of extremely low nickel mass (<0.005M) stripped-envelope supernovae, which can be explored with deep and high-cadence transient surveys. 
    more » « less
  8. Abstract Eruptive mass loss of massive stars prior to supernova (SN) explosion is key to understanding their evolution and end fate. An observational signature of pre-SN mass loss is the detection of an early, short-lived peak prior to the radioactive-powered peak in the lightcurve of the SN. This is usually attributed to the SN shock passing through an extended envelope or circumstellar medium. Such an early peak is common for double-peaked Type IIb SNe with an extended hydrogen envelope but uncommon for normal Type Ibc SNe with very compact progenitors. In this paper, we systematically study a sample of 14 double-peaked Type Ibc SNe out of 475 Type Ibc SNe detected by the Zwicky Transient Facility. The rate of these events is ∼3%–9% of Type Ibc SNe. A strong correlation is seen between the peak brightness of the first and the second peak. We perform a holistic analysis of this sample’s photometric and spectroscopic properties. We find that six SNe have ejecta mass less than 1.5M. Based on the nebular spectra and lightcurve properties, we estimate that the progenitor masses for these are less than ∼12M. The rest have an ejecta mass >2.4Mand a higher progenitor mass. This sample suggests that the SNe with low progenitor masses undergo late-time binary mass transfer. Meanwhile, the SNe with higher progenitor masses are consistent with wave-driven mass loss or pulsation-pair instability-driven mass-loss simulations. 
    more » « less
  9. null (Ed.)
    ABSTRACT Compact white dwarf (WD) binaries are important sources for space-based gravitational-wave (GW) observatories, and an increasing number of them are being identified by surveys like Extremely Low Mass (ELM) and Zwicky Transient Facility (ZTF). We study the effects of non-linear dynamical tides in such binaries. We focus on the global three-mode parametric instability and show that it has a much lower threshold energy than the local wave-breaking condition studied previously. By integrating networks of coupled modes, we calculate the tidal dissipation rate as a function of orbital period. We construct phenomenological models that match these numerical results and use them to evaluate the spin and luminosity evolution of a WD binary. While in linear theory the WD’s spin frequency can lock to the orbital frequency, we find that such a lock cannot be maintained when non-linear effects are taken into account. Instead, as the orbit decays, the spin and orbit go in and out of synchronization. Each time they go out of synchronization, there is a brief but significant dip in the tidal heating rate. While most WDs in compact binaries should have luminosities that are similar to previous traveling-wave estimates, a few per cent should be about 10 times dimmer because they reside in heating rate dips. This offers a potential explanation for the low luminosity of the CO WD in J0651. Lastly, we consider the impact of tides on the GW signal and show that the Laser Interferometer Space Antenna (LISA) and TianGO can constrain the WD’s moment of inertia to better than $$1{{\ \rm per\ cent}}$$ for centi-Hz systems. 
    more » « less